# Structural durability of a diverter shaft in the exhaust flow

The diverter valve and its shaft draw the exhaust flow of a gas turbine to either a boiler or chimney. Thus, the components are permanently exposed to a hot exhaust stream.

#### 1. Flow simulation to determine thermal loads

The thermal load of the components in the exhaust gas stream (600-700 °C) mainly depends on the flow pattern. This is dependent on the level of the diverter valve and can be calculated using a CFD simulation.

**The result of the CFD are:**

- Heat transfer coefficients on the diverter shaft and the blade
- Pressure losses in the channel
- Flow loads on the blades

**With the results, a detailed construction of the structural durability and the creep behavior of the components can be performed.**

#### 2. Calculation of the thermal strains

Thermal calculations can be performed with the help of the CFD results, and the resulting temperature strains can be superimposed with mechanical loads.

**Possible calculations are:**

- stationary calculation of certain operating points for determining the static strength and creep resistance (e.g. Stack Closed, Boiler Closed, Intermediate Position of the Blade)
- transient calculation of input and shut-down operations to determine the operational stability

Temperature distribution of 2 points in time

Stress distribution

Based on the results, critical points can be identified, and the geometry can be changed so that a safe operation is given. The proof optionally takes place via stresses or strains under consideration of plastification.

In doing so, even standards like the ASME Sec. VIII, Div. 2, ASME Sec. III NH or the KTA can be used.

**Your advantages:**

Everything from one source: flow simulation, strength calculation, and reporting.

In addition, we have experience in dealing with the end customer and support you when communicating with these upon request

#### Other examples of components in the exhaust gas stream

**Diverter casing**

**Leaf frame**